■ DESCRIPTION

VAM Voltage \& Current Meter has been designed with high accuracy dual channels(isolated) measurement, dual display and communication of 0~600V and 0~10A for DC/AC/TMRS. In compact size (48 x 96mm) \quad Build in mathematic function such as Addition / Subtraction /

Multiplication / Division / high or low selector in 2 channels input to meet various testing equipment inquiry.
 They are also build in 4 Relay outputs, 1 Analogue output and 1 RS485(Modbus RTU Mode) interface with versatile functions such as control, alarm, re-transmission and communication for a wide range of industrial applications.

FEATURE

\bullet Measuring dual channels (isolated) Voltage $0 \sim 100 \mathrm{mV} / \sim 600 \mathrm{~V}$ and Current $0 \sim 199.99 \mu \mathrm{~A} / \sim 10 \mathrm{~A}$ for DC / AC / TRMS mixable.

- Mathematic function available for Addition / Subtraction / Multiplication / Division / high or low selector in 2 channels input in option.
- 4 relay can be multi-cross programmed individual to be a Hi / Lo / Hi Latch / Lo Latch / Go energized with Start Delay / Hysteresis / Energized \& De-energized Delay functions, or to be a remote control.
- Analogue multi-cross selection output and RS 485 communication port in option
- CE Approved

- APPLICATIONS

- Testing Equipments for Volt/Current Measuring, Alarm, Control and Communication with PC/PLC च 4 Relay functions as like as Hi / Lo / Go with on and off delay time from 0.0(s)~ 9(m):59.9(s)
- DC watt measuring in solar energy to communicate with PC/PLC

V Multiple function for input 1(Adc) and input2(Vdc)

- MCC panel, Machinery, Switch gear... for Voltage or Current Measuring, Alarm and Remote I/O with PC/PLC ஏ Fantastic 4 Relay functions as like as $\mathrm{Hi} / \mathrm{Lo} / \mathrm{Hi}$ latch / Lo latch / DO(Remote control by PC/PLC).

ORDERING INFORMATION

■ TECHNICAL SPECIFICATION
Input

Measuring Range DC / AC / TRMS		Input Impedance	Measuring Range DC / AC / TRMS		Input Impedance
Voltage	$0 \sim 50 / \sim 100 \mathrm{mV}$	$\geq 5 \mathrm{M} \mathrm{ohm}$	Current	$0 \sim 199.99 \mathrm{HA}$	1 K ohm
	0~199.99 mV	$\geq 5 \mathrm{M} \mathrm{ohm}$		0~1.9999 mA	100 ohm
	$0 \sim 1.9999 \mathrm{~V}$	$\geq 1 \mathrm{Mohm}$		$0 \sim 19.999 \mathrm{~mA}$	10 ohm
	$0 \sim 19.999 \mathrm{~V}$	$\geq 1 \mathrm{M} \mathrm{ohm}$		$0 \sim 199.99 \mathrm{~mA}$	1 ohm
	$0 \sim 199.99 \mathrm{~V}$	$\geq 1 \mathrm{Mohm}$		$0 \sim 1.9999 \mathrm{~A}$	0.05 ohm
	$0 \sim 300.0 \mathrm{~V}$	$\geq 2 \mathrm{Mohm}$		$0 \sim 5.000 \mathrm{~A}$	0.02 ohm
	$0 \sim 600.0 \mathrm{~V}$	22M ohm		$0 \sim 10.000 \mathrm{~A}$	0.01 ohm

\star Dual inputs can be selected individual in Voltage \& Current for DC, AC or TRMS measuring.
\star The dual input can be specified individual in other signal such as Pt100 , mV/V etc.
Calibration:
A/D converter:
Accuracy:
Sampling rate:
Response time:
Input range:

Display \& Functions
LED:

Digital calibration by front key for each channel 16 bits resolution
DC: $\leq \pm 0.04 \%$ of $\mathrm{FS} \pm 1 \mathrm{C}$
$\mathrm{AC}: \leq \pm 0.1 \%$ of $\mathrm{FS} \pm 1 \mathrm{C}$
15 cycles/sec
$\leq 100 \mathrm{msec}$. (when the AvG = " 1 ") in standard
Input High and Low programmable for each channel
R , H : : Settable range: $0.00 \sim 100.00 \%$ of input range
R .Lo: Settable range: $0.00 \sim 100.00 \%$ of input range

LED:
Numeric: Dual display screen, 5 digits, $0.4^{\prime \prime}(10.0 \mathrm{~mm}) \mathrm{H}$ red high-brightness LED
Relay output indication: 4 square red LED
RS 485 communication: 1 square orange LED

Max/Mini Hold indication: 2 square red LED
Dual display screens:
Display range:

Scaling function:

Decimal point:
Over range indication:
Under range indication:
Max / Mini recording:
Display functions:
Mathematic functions:
(Option)
Front key functions:
Low cut:
Digital fine adjust:
Dual screens can be programming individual PV: -19999~29999; Mathematic: -19999~+99999 Individual programmable for dual input Lo.SC : Low Scale; Settable range: -19999~+29999 H.S[: High Scale; Settable range: -19999~+29999 Programmable from $0 / 0.0 / 0.00 / 0.000 / 0.0000$ ouFL , when input is over than 20% of input range Hi - ouFL, when input is under than 20% of input range Lo Maximum and Minimum value storage during power on. PV / Max(Mini) Hold / RS 485 Programmable Multi-cross selection for dual screens.
Programmable for Addition / Subtraction / Multiplication / Division / High or Low selector Relative PV / PV Hold / Reset for maxi(mini) hold / Reset for relay energized latch programmable Settable range: -19999~29999 counts Pu.アr o: Settable range: -19999~+29999 Pu.5Pn: Settable range: -19999~+29999

Reading Stable Function

Average:	Settable range: $1 \sim 99$ times
Moving average:	Settable range: 1 (None) ~ 10 times
Digital filter:	Settable range: 0 (None)/1~99 times

Control Functions(option)

Set-points:	Four set-points
Control relay:	Four relays
	Relay $2 \&$ Relay 3: Dual FORM-C, 1A/230Vac, 3A/115V
	Relay 1 \& Relay 4: Dual FORM-A, 1A/230Vac, 3A/115V
Relay energized mode:	Multi-Cross selection with display 1 \& display 2
	Energized levels compare with set-points:
	Hi / Lo / Go.12 / Go.23 / Hi.HLd / Lo.HLd; programmable
	DO function: Energized by RS485 command of master.

Energizing functions: Start delay / Energized \& De-energized delay / Hysteresis / Energized Latch
Start band(Minimum level for Energizing): 0~9999counts Start delay time: 0:00.0~9(Minutes):59.9(Second) Energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second) De-energized delay time: 0.00.0~9(Minutes):59.9(Second) Hysteresis: $0 \sim 5000$ counts

Analogue output(option)

Accuracy:	$\leq \pm 0.1 \%$ of F.S.; 16 bits DA converter
Ripple:	$\leq \pm 0.1 \%$ of F.S.
Response time:	$\leq 100 \mathrm{msec}$. (10~90\% of input)
Isolation:	AC 2.0 KV between input and output
Output range:	Specify either Voltage or Current output in ordering
	Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable
Output capability:	Voltage: 0~10V: $\geq 1000 \Omega$;
	Current: 4(0)~20mA: $\leq 600 \Omega$ max
Functions:	Multi-Cross selection to relative display 1 \& display 2
	Ro.HS (output range high): Settable range: -19999~29999
	Ro.L S (output range Low): Settable range: -19999~29999
	Ro.L $\overline{\text { nt }}$ (output High Limit): $0.00 \sim 110.00 \%$ of output High
	High/Low Selection output: The output will compare
	the 2 inputs which one is High(or Low) and tracking output.
Digital fine adjust:	Ro.アr o: Settable range: -38011~+27524
	Ro. 5 Pn: Settable range: -38011~+27524

RS 485 Communication(option)

Protocol:	Modbus RTU mode
Baud rate:	$1200 / 2400 / 4800 / 9600 / 19200 / 38400$ programmable
Data bits:	8 bits
Parity:	Even, odd or none (with 1 or 2 stop bit) programmable
Address:	$1 \sim 255$ programmable
Remote display:	to show the value from RS485 command of master
Distance:	1200 M
Terminate resistor:	150Ω at last unit.

Electrical Safety	
Dielectric strength:	AC 2.0 KV for 1 min ,
	Between Power / Input 1 / Input 2 / Output / Case
Insulation resistance:	$\geq 100 \mathrm{M}$ ohm at 500 Vdc , Between Power / Input / Output
Isolation:	Between Power / Input 1 / Input 2 / Relay / Analogue / RS485
EMC:	EN 55011:2002; EN 61326:2003
Safety(LVD):	EN 61010-1:2001
Environmental	
Operating temp.:	0~60 ${ }^{\circ} \mathrm{C}$
Operating humidity:	20~95 \%RH, Non-condensing
Temp. coefficient:	$\leq 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Storage temp.:	$-10 \sim 70{ }^{\circ} \mathrm{C}$
Enclosure:	Front panel: IEC 529 (IP52); Housing: IP20
Mechanical	
Dimensions:	$96 \mathrm{~mm}(\mathrm{~W}) \times 48 \mathrm{~mm}(\mathrm{H}) \times 120 \mathrm{~mm}$ (D)
Panel cutout:	$92 \mathrm{~mm}(\mathrm{~W}) \times 44 \mathrm{~mm}$ (H)
Case material:	ABS fire-resistance (UL 94V-0)
Mounting:	Panel flush mounting
Terminal block:	Plastic NYLON 66 (UL 94V-0)
	\#A1~A3(current input): 20A/300Vac, M3.5, 12~22AWG
Weight:	$550 \mathrm{~g} / 350 \mathrm{~g}$ (Aux. Power Code: ADH or ADL)
Power	
Power supply:	AC115/230V,50/60Hz;
	Optional: AC 85~264V / DC 100~300V or AC/DC 20~56V
Power consumption:	7.0VA maximum
Back up memory:	By EEPROM

FRONT PANEL

DIMENSIONS

INSTALLATION

The meter should be installed in a location that dose not exceed the maximum operating temperature and provides good air circulation.

■CONNECTION DIAGRAM

Input connection

Remark:
PT can not short in secondary.
CT can not open in secondary.

RS485 Communication Port

Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker.

Power Supply

Low cut(individual for each display screen):

If the setting value is positive, it means when the absolutely value of PV \leq Setting value, the display will be 0 . If the setting value is negative, it means when the $P V$ under setting value($P V \leq-$ Setting value), the display will be setting value.

Digital fine adjustment(individual for each display screen):
Users can get Fine Adjustment for Zero \& Span of PV by front key of the meter, and "Just Key In" the value which user want to show in the current input signals.
Especially, the [Pu. Prod \& [Pu.5Pn]are not only in zero \& span of PV, but also any lower point for [$P_{u} . P_{\text {r o }}$] \& higher point for [$P_{u} .5 P_{n}$]. The meter will be linearization for full scale.
The adjustment can be clear in function [P.5.CLr]

Front key functions: Relative PV / PV Hold / Reset for maxi(mini) hold / Reset for relay energized latch programmable in [dn.UEY] function of [inPUL [rouP] Relative PV -ELP. be -EL.PU function. When user press the set to Fkey, the display will show the differential value $(\Delta \mathrm{PV})$, until press Fkey again.
$>$ Please find the \square sticker to stick on the up side of square red LED.
PV Hold Pu.HLd: [dn.UEY] function can be set to be Pu.HLd function. When user press the ${ }^{7}$ key, the display will be hold until press the ∇ key again.
$>$ Please find the \quad PNAsticker to stick on the up side of square red LED.
PV Hold \& Reset

Reset for Max(Mini) Hold: when the [$\triangle 5$ PLY] in [inPUt [rouP] set to be FRh.Hd or 5 inHd , [dn.LEY] function can be set to be $\bar{\sim} . \mathrm{r} 5 \mathrm{t}$ to reset the display when it is holding in maxim or mini value.
Reset for relay energized latch: when the [$r y \operatorname{ind}]$ in [rELRY GroUP] set to be H.HLd or o.HLd, [dn.EEY] function can be set to be - Y. 5 St to reset the relay when it is energizing and latching.

Reading Stable Function

Average

Basically, the sampling rate of meter is $15 \mathrm{cycles} / \mathrm{sec}$. If the function set to be 3 times, It means the meter will update of display will be 5 times/sec.

Moving average:

If the function to be set 3 times, the meter will update delay in first 3 samples, then it will update 15 times $/ \mathrm{sec}$ continuously.

Moving Average set to be 3

Digital Filter: \quad The digital filter can reduce the magnetic noise in field.

Control Functions(option)

The VAM can be specified 4 relay output. Each relay can be multi-cross programmed to relative display 1 or display 2.
Relay energized mode: Hi/ Lo / Hi.HLd / Lo.HLd / do / Go-1.2 / Go-2.3 programmable
Hi: Relay will energize when PV > Set-Point
Lo: Relay will energize when PV < Set-Point
Go-1.2: This function is programmable in Relay 4 only. If the Relay 4 set to be Go function, the relay will compare with $[r \cup: 5 \mathrm{SP}$] and $[\mathrm{Y}$ צ.5P].
Go relay energized when the condition is
[r Y : 5 P] (Hi) > PV > [r Y 2.5P] (Lo)
Go-2.3:. This function is programmable in Relay 4 only. If the Relay 4 set to be Go function, the relay will compare with [r Y.5P] and [r Y.3.5P]
Go relay energized when the condition is
[r Y2.5P] (Hi) > PV > [r 43.5P] (Lo)

Hi.HLd (Lo.HLd): When the PV is Higher (or lower) than set-point, the relay will be energized and latch until manual reset by from key in [User Level] or press front down key to reset (Down function has to set - -r 5 st).

DO function: Energized by RS485 command of master. The function was designed to get remote control by RS485 command of master. The typical application is to control a switch in field from computer center as like as digital output(DO) of PLC.

Energized Functions：Start delay／Energized \＆De－energized delay／Hysteresis Please refer to figure as below

External control input（ECI）

VAM offers 2 point external control inputs（ECI）．They can be programmable individual with multi display and control functions．The front key function can be set to execute ECI function，but ECI terminals will be disabling．The ECI terminal input was designed by level trigger． Please refer to description as below，

Functions
Relative PV／PV Hold／Reset Max or Mini．Hold／DI／ Reset for Relay Energized latch／ banks selection（option）programmable． Relative PV or Tare：The［E［．］can be set to the －EL．PU（Relative PV）function．When the ECI is closed，the reading will show the differential value with PV．Please refer to Display function section previously．

PV Hold：The E．C．I．can be set to be P．u．H．L．d function． The display will be hold when the E．C．I．is closed， until the ECl is to be open．Please refer to the below figure．

Analogue output（option）

The analogue output can be programmed to relative display 1 or display 2．Please specify the output type either an o $\sim 10 \mathrm{~V}$ or $4(0) \sim 20 \mathrm{~mA}$ in ordering．The programmable output low and high scaling can be based on various display values．Reverse slope output is possible by reversing point positions．

Output range：
Functions：

Voltage： $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable Current：0～10mA／0～20mA／4～20mA programmable Ro．HS（output range high）：setting the Display value High to versus output range High（as like as 20 mA in 4～20）
Ro．L 5 （output range Low）：setting the Display value Low
to versus output range Low（as like as 4mA in 4～20）

The range between Ro．HS and Ro．L 5 should be over 20% of span at least；otherwise，it will be got less resolution of analogue output．

Ao．LMt（output High Limit）：0．00～110．00\％of output High User can set the high limit of output to avoid a damage of receiver or protection system

Set Scaling：Lo．SC：0．00，Hi．SC：199．99；

Fine zero \＆span adjustment：

Users can get Fine Adjustment of analogue output by front key of the meter．Please connect standard meter to the terminal of analogue output．To press the front key（up or down key）of meter to adjust and check the output

【Ro．Tro】：Fine Zero Adjustment for Analog Output； Settable range：－38011～27524
【Ro．5Pn】：Fine Span Adjustment for Analog Output； Settable range：－38011～27524

RS 485 communication（option）

The RS485＇s protocol is Modbus RTU mode，and baud rate up to 38400 bps．It＇s not only convenience to remote monitoring，display for reading and ECI status，but also for remote control in the case that doesn＇t have any DIO device in the field．
APPLICATION FOR VOLTAGE／CURRENT \＆FREQUENCY MEASURING \＆RS485 COMM．

Remote Display：

The meter will show the value that received from RS485 command．In past，The meter normally receive 4～20mA or 0～10V from AO or digital output from BCD module of PLC．We support a new solution that PV shows the value from RS485 command of master so that can be save cost and wiring from PLC．

When the【 $d 5 P L Y$ 】 set to be RS485，it means，the PV screen will show the number from RS485 command \＆data．The data（number）will be same as PV that will compare with set－point，analogue output and ECI functions so that is to control analogue output，relay energized and so on．
CS2 APPLICATION FOR REMOTE DISPLAY FROM RS485 COMMAND

Calibration

System calibration by front key．The process of calibration， please refer to the operating manual

ERROR MASSAGE

BEFORE POWER ON, PLEASE CHECK THE SPECIFICATION AND CONNECTION AGAIN.
SELF-DIAGNOSIS AND ERROR CODE:

DISPLAY	DESCRIPTION	REMARK
ouFL	Display is positive-overflow (Signal is over display range)	(Please check the input signal)
-ouFL	Display is negative-overflow (Signal is under display range)	(Please check the input signal)
ouFL	ADC is positive-overflow (Signal is higher than input 120\%)	(Please check the input signal)
-ouFL	ADC is negative-overflow (Signal is lower than input -120\%)	(Please check the input signal)
$E E P \stackrel{F R}{ } \quad \stackrel{L}{ }$	EEPROM occurs error	(Please send back to manufactory for repaired)
	Calibrating Input Signal do not process	(Please process Calibrating Input Signal)
R,L \Rightarrow FR L	Calibrating Input Signal error	(Please check Calibrating Input Signal)
RoL.n¢ $\Leftrightarrow \mathrm{Pu}^{\text {¢ }}$	Calibrating Output Signal do not process	(Please process Calibrating Output Signal)
RoL $¢$ FR L	Calibrating Output Signal error	(Please check Calibrating Output Signal)

FRONT PANEL:

VAM has two display screens and I/O status indication for purposes.

Numeric Screens

- Left screen: 0.4 " $(10.0 \mathrm{~cm})$ red high-brightness LED for 5 digits to relative input 1 or mathematic.
- Right screen: 0.4 " $(10.0 \mathrm{~cm})$ red high-brightness LED fo r 5 digits to relative input 2 or mathematic.
I/O Status Indication
- Relay Energized: 4 square red square LED

RL1 display when Relay 1 energized;
RL2 display when Relay 2 energized;
R13 display when Relay 3 energized;
RL4 display when Relay 4 energized;

- Display status: 3 square red square LED
- RS485 Communication: 1 square green LED

COM will flash when the meter is receive or send data, and COM flash quickly means the data transient quicker.

- Max/Mini Hold indication: 2 square orange LEDs

WIT displayed: When the display function has been selected in Maximum or Minimum Hold function.
Stickers:
Each meter has a sticker what are functions and engineer label enclosure.

- Relay energized mode: 1 मा LD LL DO
- Front key functions mode:

PIH PV.H(PV Hold) / Fare Tare / DI DI(Digital Input)
[IIRS M.RS(Maximum or Minimum Reset) /
B.ifS R.RS(Reset for Relay Latch)

- Engineer Label: over 80 types.

	Setting Status	Function Index
Qup key	Increase number	Go back to previous function index
DDown key	Decrease number	Go to next function index
Shift key	Shift the setting position	Go back to this function index, and abort the setting
Enter/Fun key	Setting Confirmed and save to EEProm	From the function index to get into setting status

Pass Word: Settable range:0000~9999;
User has to key in the right pass word so that get into【Programming Level】. Otherwise, the meter will go back to measuring page. If user forgets the password, please contact with the service window.
Function Lock: There are 4 levels programmable.

- None: no lock all.
- User Level: User Level lock. User can get into User Level for checking but setting.
- Programming Level: Programming level lock.

User can get into programming level for checking but setting.

- ALL: All lock. User can get into all level for checking but setting.

Down Key Function

- The Key can be set to be the function as below

Relative PV / PV Hold / Reset for maxi(mini) hold / Reset for relay energized latch programmable

$■$ OPERATING DIAGRAM (The detail description of operation, please refer to operating manual.)

Programming Level

Press for 1 sec. can back to Measuring

$\stackrel{i}{4}$		¢					\bigcirc		Ro. $5 P_{n}$: Fine Span Adjustment for Analog High Output -38011~+27524
						ry liny: Relay 1 Hysteresis $0 \sim 5000$ counts			P.S.CLr: Zero \& Adjustment Adjustment nonE / Ro. Bro
$\frac{1}{4}$						rY Ird: Relay 1 energized delay time 0:00.0~ 9(m):59.9(s)	$\stackrel{\circ}{\circ}$	RoLñ $\begin{array}{\|l\|l\|l\|l\|} \hline 1000 \\ \hline \end{array}$	Rolint: Analog Output High Limit \qquad
						ry IFd: Relay 1 de-energized delay time 0:00.0~ 9(m):59.9(s)			
-		¢		$\begin{aligned} & 0 \\ & \hline 1 \\ & \hline 1 \end{aligned}$		re.5EL: Multi-Cross Selection (PV1 or PV2) for Relay 2 Output Pūㄱ/ Puñ		\downarrow	
		¢		$\bar{\infty}$		ryend: Relay 2 energized mode off/ Lo HI/ LOHLD HIHLD/ do		$\begin{array}{\|l\|l\|} \hline \text { Lroup } \\ \hline \hline 5485 \\ \hline \end{array}$	RS485 GROUP
		N		$\underset{\infty}{\sim}$		г Чə.нч: Relay 2 Hysteresis $0 \sim 5000$ counts		Rdres - 1 I	RdrE5: Device number of the meter 1~255
		$\underset{4}{4}$		$\frac{\mathrm{m}}{\stackrel{m}{1}}$		ry2.rd: Relay 2 energized delay time 0:00.0~ 9(m):59.9(s)	N	bRUd 9600 1780	bRUd: Baud rate 38400 ,
¢				$\underset{~ T}{\top}$		r Y F.F d: Relay 2 de-energized delay time 9(m):59.9(s)	0		
		\%		$\frac{n}{\vdots}$		r 3.5EL: Multi-Cross Selection (PV1 or PV2) for Relay 3 Output Puñ/ Puñ			
		$\stackrel{\sim}{\vdots}$		$\stackrel{0}{1}$					
				$\underset{\infty}{\hat{j}}$		r 43 HY : Relay 3 Hysteresis 0~5000counts			

